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ABSTRACT

A probabilistic evaluation of an eight-ply graphite/epoxy quasi-isotropic
laminate was completed using the Integrated Composite Analyzer (ICAN) in con-
junction with Monte Carlo simulation and Fast Probability Integration (FPI)
techniques. Probabilistic input included fiber and matrix properties, fiber
misalignment, fiber volume ratio, void volume ratio, ply thickness and ply
layup angle. Cumulative distribution functions (CDF's) for select laminate
properties are given. To reduce number of simulations, a Fast Probability
Integration (FPI) technique was used to generate CDF's for the select proper-
ties in the absence of fiber misalignment. These CDF's were compared to a
second Monte Carlo simulation done without fiber misalignment effects. It is
found that FPI requires a substantially less number of simulations to obtain
the cumulative distribution functions as opposed to Monte Carlo Simulation
techniques. Furthermore, FPI provides valuable information regarding the sen-
sitivities of composite properties to the constituent properties, fiber volume
ratio and void volume ratio.
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SYMBOLS

composite elastic modulus (Mpsi) about structural axes

fiber elastic moduli about material axes

matrix elastic moduli

cumulative distribution function

probability density function

joint probability density function

composite shear modulus (Mpsi) about structural axes

FPI limit state function
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gl linear approximation of g

g2 incomplete quadratic approximation of g

kf,km,kv fiber volume fraction, matrix volume fraction, void volume
fraction

U standardized normal deviate

uniform deviate

Y normal, Weibull or gamma deviate

FPI response function

Weibull distribution parameters

acxx composite thermal expansion coefficient (ppm/°F) about struc-
tural axes

r(x) gamma function

gamma distribution parameters

normal distribution parameters

Vfl2,Vm fiber and matrix Poisson's ratios

INTRODUCTION

The properties of the polymer matrix composites display considerable scat-
ter because of the variation inherent in the properties of constituent materi-
als. Distinct distributions to describe the effects of scatter on composite
properties facilitate the composite mechanics calculations. For example com-

posite strength is often examined probabilistically by assuming that the ply
failure strength has a specific distribution (usually Weibull) which is then
used in a laminate failure criterion (1). Analysis of this type has the short-
coming that different failure mechanisms occurring at a lower level, that is,
at the fiber and matrix level are not directly accounted for when the ply fail-
ure stress is the primitive random variable.

A better approach to quantify the uncertainties in the behavior of compos-
ites would be to account for the variations in the properties starting from
the constituent (fiber and matrix) level and integrating progressively to
arrive at the global or composite level behavior. Typically, these uncertain-
ties may occur at the constituent level (fiber and matrix properties), at the
ply level (fiber volume ratio, void volume ratio, etc.) and the composite
level (ply angle and lay-up). In this paper, a computational simulation tech-
nique is described which accounts for uncertainties at various levels to pre-

dict the behavior of a quasi-isotropic graphite/epoxy (0/45/90-45)s laminate.



MICROMECHANICALANDMACROMECHANICALUNCERTAINTIES

Uncertainties at the Micromechanics Level

To account for uncertainties at all levels of a composite, one has to
start with uncertainties at the fiber and matrix level and use composite
mechanics to obtain laminate level response. In the present effort the com-
posite mechanics available in ICAN (2) is utilized to obtain the ply/laminate
level response. At the micromechanics level 29 Parameters (the constituent
properties) are required by ICAN as input (2) (schematic Fig. 1). In addition
three fabrication process variables (Table II) are needed to compute ply prop-
erties. For the most part, these properties were considered to be normally
distributed about some mean value. However, the fiber and matrix strengths
were taken to be distributed as a Weibull distribution which is widely accepted

for strength distributions because of its dispersed left tail and sharp right
tail which represents experimental data well.

The distribution types and parameters for the fiber and matrix constitu-
ent material properties are given in Table I. Using the Monte Carlo simula-
tion, these distribution types reproduce histograms (frequency of occurrence)
plots as shown in Fig. 2 for fiber longitudinal modulus and in Fig. 3 for

fiber longitudinal strength. It would require testing of 1000 specimens to
generate them experimentally (a rather expensive and time consuming task). It
is worth noting that for the Weibull distribution the mean is not parameter 1
nor is the variance parameter 2. In this case the probability density func-
tion, mean and variances are given by (3).

where

xB. !

Mean = a-Gr<l + _),

2

Variance-¢_-G[r(1 + _)-r2(1 + _)] (2)

Uncertainties at the Ply Level

The next level of uncertainties enters at the ply level. A typical graph-
ite fiber has a nominal diameter of 0.0003 in. which means that a single ply

contains many fibers through the thickness. If an eight-ply graphite/epoxy
composite is considered with a nominal thickness of 0.04 in. each ply will be
approximately 0.005 in. thick. Taking into account an interfiber spacing of
0.00005 (for a ply with fiber volume ratio 0.6) in. there are about 15 fibers
through the thickness of each ply. All of these fibers will have a certain
amount of misalignment (random orientation}. To account for this randomness
in probabilistic micromechanics, linear laminate theory is used where each ply
is broken down (substructured) into 15 subplies (2). Each of these subplies
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was assumed to be normally distributed about the fiber direction with fiber
orientations lying within ±5 ° of the O°-ply direction. The properties of the
constituents are assumed to be the same in the subplies within each ply. The
fiber volume and ply thickness were represented as normally distributed while
the void volume was represented as a gamma distribution. A gamma distribution
was the proper choice for the void volume ratio because there is no probability

for zero void volume and a bias towards higher void volumes.

As was the case for the Weibull distribution, the parameters given for
the gamma distribution do not directly represent the mean and variance of the
distribution. The probability density function, mean and variance for the
gamma function are given by (3).

7,_: -),y k-1
f(y) = r--_--_e Y (3)

k __k___Mean = _-, Variance
A k 2

(4)

The ply level distribution parameters are given in Table II.

Uncertainties at the Laminate Level

The uncertainty considered at the laminate level was that of ply orien-

tation and thickness. Each ply in the (0/45/90/-45)s was given a normal
distribution with a 3.33 ° standard deviation about the deterministic angle
(Table III).

MONTE CARLO SIMULATION

Given the distributions of Tables I, II and III for fiber and matrix

properties, ply and laminate inputs, the uncertainties in the composite
properties need to be quantified with appropriate cumulative distribution
functions (CDF's). One approach to achieve this is to use a Monte Carlo Simu-
lation technique. The first step in this process involves running ICAN with
randomly selected input variables from the predetermined probability distribu-
tion functions many times. The output comprising of the composite properties
is saved. The second step consists of processing the various property output
data to compute the desired CDF. An obvious disadvantage of such an approach
is the enormous number of output sets that must be obtained to get reasonable
accuracy in the output CDF's.

Generation of Normal Distributions

In order to generate the input distributions, a uniform deviate (random
number between 0 and 1) must first be generated. Rather than use a machine
routine to generate the random number, a portable (machine independent) uni-
form deviate routine from Press et al. (4) was used which was based on a three

linear congruential generator method. This routine also had the advantage of
being able to reinitialize the random sequence.
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The uniform deviate was used to generate a normal deviate by the Box-
Muller method (4). With the aid of the normal distribution f(y) given by

2
_Y._

1 2
f(y)dy = --e dy

4"2-_

and the transformation between uniform deviates Xl,X 2 and the variables
Yl,Y2 given by

Yl = _ In x I cos 2_x 2, Y2 = 4-2-2" In x I sin 2_x 2,

the inverse transformation can be written as

2 2
Yl÷Y2

2 1 Y2

xI _ e , x2 = _-_ arctan Yl

The Jacobian of this transformation is

r F
which shows that each y is distributed normally. This shows that Eq. (6)
leads to an explicit formula for calculating a normal deviate.

(s)

(6)

(7)

(8)

Generation of Weibull Distribution

To generate a Weibull distribution from a uniform deviate one can inte-

grate the probability density function and then solve for the Weibull deviate.
This gives

1

y = B[-In(l - x)] a (9)

as a point from the Weibull distribution where x is a uniform deviate.

Generation of Gamma Distribution

To generate a deviate from a gamma distribution, a uniform deviate, x,
was taken and then the zero of the function



Xk
w(y) =Zr-_e-Xyyk-ldx - x

o

(io)

was found. This was numerically inefficient because it involved numerical

integration and root finding by the bisection method, but the program ran with
sufficient speed to overlook this fact.

The program ICAN was modified so that the properties shown in Tables I,
II and III were given a value from their respective distributions. Output
for the layer and composite properties were saved for 200 samples. While
200 samples is probably not enough to converge to the actual CDF, the results
do show a good qualitative trend. The cumulative distribution functions were

constructed from these samples for three typical composite properties. The
selected composite properties are the composite longitudinal modulus Ecx x,
the composite compressive strength Scxxc, and the composite thermal expansion
coefficient _cxx. These CDF's are shown in Figs. 4 to 6. By its symmetry,
the CDF of Ecx x appears to be normally distributed while Scxxc exhibits a
Weibull shape (5).

FPl SIMULATION

An alternative approach to obtain the required cumulative distribution

functions is to use Fast Probability Integration (FPI) program (6). FPI helps
generate the required CDF's quicker with reasonable accuracy and a lot less
number of sample output data. Also, it generates more information than what
can be expected from a Monte Carlo simulation. The additional information

that FPI offers is the output variable sensitivity information based on the
probabilistic inputs.

A brief overview of FPI is given below. The reader is advised to refer
to (6) for a detailed discussion.

Consider a response function

Z(X) = Z(XI,X 2 ..... Xn)

where Xl,...,X n are random variables. Also, define the function

(11)

g=Z(X)- Zo--O (12)

as the limit state with Zo a real value of Z(X). The CDF of Z at Zo is
equal to the probability that [g _ 0], If the probability of a desired out-
put, pf, is defined by

pf = P[g<O] (13)

an exact solution of pf can be obtained from

pf = ..._f (X)dX_ (14)
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where fx(_) is the joint probability density function and _ is the region
defined _y [g £ 0].

The evaluation of the preceding integral is often intractable and this

leads to the need for an approximate method of evaluation pf. In doing this,
FPI approximates the function g using a Taylor's series expansion as a linear

n

:ao*E i(oi ui)
i=1

(15)

or incomplete quadratic

n n

g2(u) = ao +_ai(u i

i=1

. , . 2

-uil ÷_bi(ui- ui)

i:1

(16)

function where u i is the most probable point (6) of the random variable u i.

Note that the random variables X have been replaced by standardized normal
variables u. The coefficients _f these expansions are obtained numerically
and then the probability Pig(O] is computed.

Because of the approximate form of the g-function, FPI requires at least
n+l or 2n+1 data sets to evaluate the linear or quadratic g-function coeffi-
cients a , a i, and b i from which the probability is found. In the present
effort only the ply level variations in the properties (29), fiber volume ratio
and void volume ratio are considered as random variables. This means that at

least 32 (29 constituent properties, fiber volume ratio, void volume ratio +1)
ICAN runs are needed for the linear approximation and 63 for the quadratic

approximation. A typical data set to FPI consisted of ICAN run with one per-
turbed independent variable while all others remaining at mean value. For the
linear case, the variable was perturbed one standard deviation from its mean
value. In the quadratic case, the independent variables were perturbed twice,
one standard deviation each, on both sides of the mean value.

Three typical composite properties Ecx x, Gcxy, and _cxx were chosen as
the output variables for the study. Since the goal was to have a minimum
number of ICAN runs, the CBF of Ecx x was calculated using 32 data sets with
linear FPI analysis and 125 data sets with quadratic analysis. With these two
cases, the CDF's computed by FPI lay on top of each other indicating that 32
data sets will give a good approximation for the CDF of Ecx x.

To identify the computational savings that FPI has over a Monte Carlo sim-

ulation, the CDF's for Ecx x, Gcx v, and _cxx were compared for a 32 sample
FPI case with a 31 and 90 sample _lonte Carlo simulation (Figs. 7 to 9). It
appears that the Monte Carlo simulation is converging to the FPI simulation,
but the FPI simulation only needed 32 samples.
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FPI Sensitivity Output

As was previously mentioned, one advantage of FPI is the sensitivity data
that is produces. Before the actual sensitivity numbers are given for the com-

posite modulus Ecx x, it will be helpful to examine how this quantity is calcu-
lated by ICAN.

The modulus Ecx x is the (1,1) entry of the matrix (2)

[Ec] 1-- (Zli+l - Zli)([R 1] T[E1][al])i (17)

where t c is the thickness of the composite, Zli is the distance from the
bottom of the composite to the ply, [R 1] is rotation matrix which is a func-
tion of the ply angle, [El] is the matrix of the layer elastic constants, dis-
tortional energy coefficient. To calculate the ply elastic moduli matrix,
[El], the components are calculated from primitive variables Efl 1, Ef2 2, Em,
Gfl 2, Gf2 3, Gm, kf, k m, uf12, and _m (2}. So in the case of no ply substruc-
turing or ply angle variation, the composite modulus should be a function of
only these 10 primitive variables. It is noted that k m is calculated by

k m = 1 - kf - k v (18)

and is not listed as a primitive variable. Thus kv will be used instead of
km in the sensitivity analysis.

For the input random variables given previously, FPI calculated a mean
Ecx x of p = 5.744 Mpsi with a standard deviation of a = 0.363 Mpsi. The
sensitivities at ±0.3a are given in Table IV. As would be expected, the most

sensitive primitive variables are the fiber modulus Efl I and the fiber volume
ratio kf. Primitive variable Gf23 has a zero sensitivity which is consistent
with the definition of Ecx x given in matrix Eq. (17).

CONCLUSIONS

A probabilistic evaluation of an eight-ply quasi-isotropic graphite/epoxy
[0/45/90/-45] s laminate was completed using two approaches. The first approach
was to use a Monte Carlo simulation technique. The second approach was to use

fast probability integration technique (FPI). Probabilistic inputs for this
study included constituent micromechanical properties, fiber misalignment
within a ply, fiber volume fraction, void volume percent and ply angle mis-

alignment for the laminate.

It was demonstrated that the use of the FPI program can greatly reduce
the computations needed to generate composite CDF's. FPI was demonstrated by

generating CDF's for Ecx x, Gcx v and acxx for a graphite/epoxy
[0/45/90/-45] s composite in theVabsence of fiber misalignment.
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The results of this investigation indicate that an integrated program
combining IC/kNand FPI is feasible. Such an integrated program offers the
potential for a computational efficient probabilistic composite mechanics

methodology.
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TABLE I. - CONSTITUENT INPUT DISTRIBUTION PARAMETERS FOR ICAN

Ef11
Ef22
Gfl2
Gf23

Vfl2
vf23
afll
af22
Pf
Nf
df
Cf
Kf11
Kf22
Kf33
SfT
SfC
Em
Cm
_m
o_m
Pm
cm
Km
SmT

SmC
SmS
[3m

Dm

Distribution

Units

Mpsi
Mpsi
Mpsi
Mpsi
in./in.
in./in.

ppm/°F
ppm/°F
Ib/in. 3

in.
BTU/lb

(a)
(a)
(a)

ksi
ksi

Mpsi
Mpsi
in./in.

ppm/°F
lb/in. 3
BTU/lb

(a)
ksi
ksi
ksi
in./in. 1%

moisture
in.2/sec

Type

Normal

Fixed
Normal

i
i

1
Weibull
Weibull
Normal

(b)
Normal

weibull

Weibull
Weibull
Normal

Normal

Parameter 1

p = 31.0
p= 2.0
p - 2.0
p - 1.0
p -- 0.20
p = 0.25
la =0.2
p = 0.2
p = 0.063
p = 10 000
p = 0.003
p = 0.20
p = 580
p = 58
p = 58
13 = 400

[3 = 400

p = 0.500

p = 0.35
p = 36
p = 0.0443
p = 0.25 "
p = 1.25
p = 15
p - 35
p = 13
p = 0.004

p = 0.002

Parameter 2

¢= 1.5
a = 0.10
¢ = 0.10
cr = 0.05
cr = 0.01

,¢

a = 0.003
¢ = 0
<r = 0.00015
o = 0.01
cr = 2.9
¢=2.9
a=2.9
cr = 40

¢ = 40
o = 0.025

¢ = 0.035
a = 4
a = 0.0022

_ 0.0125
o = 0.06

a = 5
= 20
= 7

o = 0.0002

o = 0.0001

aE BTU • in./hr/ft2/°F.

bGm is calculated using Em and _m, and isotropy.
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TABLEI I. - PLY INPUTDISTRIBUTION PARAMETERS FOR ICAN

Units

kf Percent
kv Percent
Of Degrees

Distribution

type

Normal
Gamma
Normal

Parameter 1

= 60
),=2

]_=0

Parameter 2

<7=3
k=6

= 3.33

TABLE III.- LAMINATE INPUT DISTRIBUTION PARAMETERS FOR ICAN

Units

e 1 Degrees
t 1 Inches

Distribution

type

Normal
Normal

Parameter 1

p=O
p= t o

Parameter 2

= 3.33

a = O.O5t o

TABLE IV. - NONZERO SENSITIVITY

PARAMETERS FOR Ecx x FROM

FPI AT ±0.3a AWAY FROM

MEAN OF p = 5.744 MPSI

Primitive
variable

kf
Efll
Ef22
Gf12
Gm
Em
Gf23
vf12
_'f12
_m

kv

Sensitivity
parameter

O. 778
.624
.260
.130
•060
•036
.0
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Figure 1.- Integrated composite micro- and macromechanics
analysis embedded in the computer code ICAN.
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Figure 2. - Monte Carlo simulation (1000 samples) of
fiber longitudinal modulus from a normal distribution.
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Figure 3.- Monte Carlo simulation (1000 samples) of
fiber longitudinal strength from a Weibull distribution.
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